POCKET CAMP STOVE

Inventor: Iwamoto Zenzaburo, Yokohama, Japan


Appl. No.: 704,119

Filed: Jul. 12, 1976

Int. Cl. 2 F24C 5/20

U.S. Cl. 126/38; 222/402.14; 431/344

Field of Search 126/38, 40, 43, 44, 126/9 R; 431/344; 222/402.14, 287, 509; 137/222

References Cited

U.S. PATENT DOCUMENTS
2,325,077 7/1943 Robinson 126/38
2,331,931 10/1943 Robinson 126/38
3,213,849 10/1965 Hirsch 126/43
3,400,705 9/1968 Axelson 126/44
3,655,152 5/1972 Yoshida 431/344
3,809,054 5/1974 Bowman et al. 126/38

FOREIGN PATENT DOCUMENTS
433,984 1/1912 France 126/38

Primary Examiner—Edward G. Favors
Attorney, Agent, or Firm—Graybeal, Barnard & Uhlir

ABSTRACT

Three wire leg members are attached to a relatively small hub member and are movable between a folded position in which all three leg members are relatively together and in use position in which the three leg members are substantially equally spaced apart and extend radially outwardly from the hub member. A gas burner unit is received within an upwardly directed recess formed in the hub member and includes an upwardly directed burner head. The wire leg members have lower portions restable on a support surface and upper portions providing a pan support at a level above the burner head. A flexible hose extends from the burner unit to a control valve and adaptor assembly attachable to the top of a can of butane gas. The control valve includes a knob and means controlled by rotation of the knob for moving a depressible member which is a part of an outlet valve built into the can, for both turning the gas flow on and off and regulating its flow rate.

5 Claims, 4 Drawing Figures
POCKET CAMP STOVE

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to small gas stoves for outdoorsmen, and in particular to such a stove which is foldable into a compact, pocket-size package.

2. Description of the Prior Art

Various types of small stoves have been proposed and/or marketed for use by campers and other outdoorsmen. However, the known stove of this type do not satisfy the need for a stove which is extremely simple in construction, is easy to assemble and use, and when not in use can be collapsed and stored in a quite small pocket shape storage space. It is the primary object of this invention to provide a lightweight pocket size camp stove which fulfills this need.

SUMMARY OF THE INVENTION

The portable gas stove of this invention is basically characterized by a burner support hub member; a plurality of leg members which are connected to the hub member, each of which includes a lower foot portion restable on a support surface and an upper pan supporting portion; and a gas burning unit positionable on the support hub. The gas burner unit includes a burner head which extends upwardly from said hub to a level below the level of the pan supporting portions of the legs. A gas supply conduit is connected to the burner unit and extends therefrom to a connector which is especially adapted for connecting it to a can of gaseous fuel under pressure of a type having a depressable member controlled outlet valve built into the can. The connector includes a valve means which is operable for moving the depressable member a selected amount for both turning the gas flow on and off and regulating its flow rate.

According to an aspect of the invention, the connector comprises a first adapter member which is attachable to an upper portion of a can of gaseous fuel of the type described. Such member includes an upstanding, externally threaded tubular stem that, when said member is installed on a can of gaseous fuel, is generally concentric with the depressable control member of the outlet valve built into the can and such depressable control member projects upwardly into the interior of the tubular stem. The connector also includes a second member in the form of a rotatable control cap having internal threads mateable with the external threads of the stem. A third member is affixed to the end of the flexible hose and includes a socket for engaging the depressable member on the can. The rotatable control cap is rotatable about the third member but is otherwise fixed in position relative to the third member. As a result of this arrangement, when the control cap is rotated in the direction causing it to screw itself onto the threads on the stem of the first member it causes the third member to be moved axially inwardly to contact and depress the depressable member. The control cap is rotatable between an off position in which the third member does not depress the depressable member enough to cause any flow of gas out from the can to a fully open position in which the depressable member is substantially fully depressed and there is a maximum flow of gas out from the can.

According to another aspect of the invention, each leg member is formed from a piece of wire and comprises a first end portion which is insertable into a lower socket formed for it in the hub member, and said leg member extends downwardly from said end portion to form a lower foot portion, and from said lower foot portion extends upwardly to form an upper pan supporting portion, and then extends downwardly to a second end portion which is received within an upper socket formed for it in the hub member. The two end portions of each wire leg member function as trunnions, so that the leg members can be folded between a stowage position in which all of the leg members are relatively together and an in use position in which the leg members are spaced apart and extend substantially radially outwardly from the hub member.

These and other features, objects and advantages of the invention will be apparent from the preferred embodiment which is illustrated in the drawing and described below.

BRIEF DESCRIPTION OF THE DRAWING

In the drawing like element designations refer to like parts, and FIG. 1 is an isometric view of an embodiment of the invention in its operative condition; FIG. 2 is an isometric view of the hub member and leg assembly, showing the legs folded; FIG. 3 is a fragmentary elevational view of the stove, showing one leg and the burner head in elevation and the hub member in vertical section; and FIG. 4 is a vertical section view of the control valve and adapter assembly.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to the drawing more specifically, the stove is shown to comprise a hub member 10 to which a plurality of leg members 12 are connected. Each leg member 12 includes a first end portion 14 which extends generally vertically and is insertable into a lower socket formed for it in a portion of the hub member 10. The wire forming the leg member 12 extends from end portion 14 first laterally and then downwardly to form a support foot 16, and from said support foot 16 extends upwardly and outwardly to the outward end of a generally horizontal pan support portion 18. FIG. 3 includes a broken line showing of a pan 19. The wire then extends from the inner end of the pan support portion 18 both inwardly and downwardly to a second end portion 20 which extends into a socket formed for it in the upper portion of hub member 10. The two end portions 14, 20 and the two sockets therefore are axially aligned, and serve to mount the leg member 12 for rotation between a folded position and an in use position. When they are in their in use positions the leg members 12 are substantially evenly spaced apart and extend substantially radially outwardly from the hub member 10. Hub member 10 may be formed to include a lock notch 22 which is in position to engage the wire member. However, this construction allows the leg members 12 to be easily moved angularly in position out from engagement with the notches. The wire snaps into and out from the notches. When in their folded condition, all of the leg members are relatively close together, as shown by FIG. 2. The hub member 10 is formed to include an upwardly directed recess which receives a base portion 24 of a burner unit 26. The recess also receives the inner portion of an inlet stem 28. The burner unit 26 includes a burner head 30 which is quite conventional in con-
struction and is adapted to mix atmospheric air with a gaseous fuel to form a combustible mixture.

A flexible fuel supply hose 32 is attached to the outer end of the inlet pipe 28. At its end opposite inlet pipe 28 the hose 32 is attached to a tubular member 34. A control knob member 36 is mounted onto hose 32 for rotation in position about member 34. However, members 34, 36 are fixed in position axially. The member 34 includes an axial central passageway which is a continuation of the passageway through hose 32. The end part of the passageway forms a socket for receiving the upper end portion 38 of a depressible control member 38 which is a portion of an outlet valve mechanism 40 built into the fuel can 42. The depressible member 38 includes an axial passageway through which the gaseous fuel flows when leaving the can 42. Opening and closing of this passageway is controlled by movement of the member 38. The valve mechanism is constructed so that the flow rate of the gaseous fuel out from can 42 is proportional to the amount of depression of control member 38.

The stove includes an adapter member 44 having a base portion 46 which is preferably plug fitted onto the upper portion of can 42. That is to say, it includes a lower tubular neck portion which is sized onto and frictionally engage an upper portion of the can 42. Member 44 includes an upstanding externally threaded tubular stem 48. When member 44 is positioned on can 42, the depressible control member 38 projects upwardly part way into the interior of the stem 48. Control cap 38 includes internal threads which are mateable with the external threads on stem 48. As will be appreciated, rotation of the control stem 36 in the clockwise direction will cause the control cap to move axially downwardly relative to stem 48. This causes member 34 to also move axially downwardly and as it moves it depresses the valve member 38. The member 44 may be provided with indicia on its upper surface 50 for indicating an off position (in which member 38 is not depressed at all) and a fully open position (in which member 38 is fully depressed).

The burner is prepared for use in the following manner. The base assembly comprising the hub member 10 and the leg member 12 is removed from the storage pocket. The leg members 12 are swung apart until they snap into the notches 22. Then the several pieces of the burner assembly are attached together and the base portion of the burner assembly, and the inlet pipe 28, are set downwardly, into the recess formed in hub member 10. Next, adapter member 44 is snap fitted onto the top of the fuel can 42. Then, control cap is loosely joined with the stem 48. The camp stove is now ready to be turned on in the following manner. With the stove set up on a substantially level surface, a lighted match is held next to the burner head 30 and the control cap 36 is turned clockwise until the burner lights. The control cap 36 is then turned an additional amount while watching the flame until a substantial body of flame is present. Care must be taken to maintain the fuel can 42 spaced away from the flame and in an upright position. The heat ranges from simmer to about 1,600°F and may be regulated by the control cap 36.

The stove is prepared for packing by first turning the control cap 36 counterclockwise until the flame is extinguished. Then, the stove is allowed to cool for about 5 minutes or more. In the meantime, the control cap 36 is completely removed from stem 48 and the adapter member 44 is removed from the fuel can 42. Following sufficient cooling, the burner members 24, 28, 30 are removed from the support head 10. The legs 12 are then swung inwardly together to their folded position. Then, this assembly of hub member 10 and legs 12, and the other components 18, 24, 28, 30, 32, 34, 36, 44 may be placed back into their storage packet.

The stove can be fueled by an 8 fluid ounce can of butane gas or the like of the type which is marketed for use in filling cigarette lighters, etc.

What is claimed is:

1. A portable gas stove comprising:
a gas burner unit including a burner head; and
a gas supply conduit having an outlet end connected to said burner unit, and an inlet end connected to gas control means which are adapted for connection to a can of gaseous fuel under pressure of a type having a protruding depressible member controlled outlet valve built into the can, and in which gas flows out from said can via an axial passageway in said depressible member, said gas control means being operable for moving the depressible member selectively variable amounts for both turning the gas flow on and off and regulating its flow rate, and said gas control means including an inlet port which is in alignment with the axial passageway in the depressible member when said gas control means is connected to the gaseous fuel can.

2. The portable gas stove of claim 1, wherein said gas control means includes a tubular plunger member having a longitudinal passageway, the inlet part of which is, during use, axially aligned with said axial passageway in the depressible member of the can of gaseous fuel, the outlet part of which communicates with said gas supply conduit, said tubular member being operable for moving said depressible member axially a selectively variable amount for both turning the gas flow on and off and for regulating its flow rate, said longitudinal passageway providing a conduit for conveying gaseous fuel from said can to said gas supply conduit.

3. The portable gas stove of claim 2, wherein one end of said plunger member includes a socket that, when said gas control means are installed on the can of gaseous fuel, telescopeically engages the depressible member on the can of gaseous fuel.

4. The portable gas stove of claim 2, wherein said gas control means further comprise an adapter member which includes a base portion attachable to an upper portion of the can of gaseous fuel and which includes an upright, externally threaded tubular stem that, when said adapter member is installed on the can of gaseous fuel, is generally concentric with said depressible member, and a rotatable control knob member which has internal threads mateable with the external threads on said stem, said plunger member carried by said control knob member and moved downwardly by said control knob member to depress said depressible member when said control knob member is rotated in one direction and moved upwardly by said control knob member to at least partially release said depressible member when said control knob member is rotated in the opposite direction.

5. The portable gas stove of claim 3, wherein the base portion of said adapter member is adapted to make a snap fit with the can of gaseous fuel.

* * * *